[16.10.2024] Школьный этап Сириус по Математике задания и ответы для 9 класса 2024-25 г.

Это изображение имеет пустой атрибут alt; его имя файла - -2-1024x295.png

Официальные материалы задания, ответы на Школьный этап Сириус по Математике (1 группа) 2024-2025 г. У нас Вы найдете разборы заданий для 7,8,9,10,11 классов на все предметы. Ежедневно мы публикуем школьные работы, чтобы Вы могли пользоваться заданиями и ответами за символическую плату.

Задания ШЭ Сириус по Математике 9 класс 2024г 1 группа:

Подпишись на telegram канал

Задание 1. Коля заметил, что для краткой записи дней недели: пн, вт, ср, чт, пт, сб, вс используются 8 букв, из которых «б» встречается 1 раз, «в» 2 раза, «н» 1 раз, «п» 2 раза, «р» 1 раз, «с» 3 раза, «т» 3 раза, «ч» 1 раз. Коля выбрал 53 последовательных дня и для них сосчитал А количество букв «т», и Б количество букв «р», встречавшихся в записи дней недели в выбранный период. Какое наибольшее значение могла принять разность А Б?
Показать ответ

Задание 2. Дан квадратный трёхчлен f(x). Известно, что линейная функция y=f(x+1)−f(x) обращается в ноль при x=5. При каком значении аргумента обращается в ноль функция y=f(x+3)−f(x)?
Показать ответ

Задание 3. Найдите наименьшее число, начинающееся с цифр 2332 и делящееся на 225.
Показать ответ

Задание 4. Ваня выбрал на плоскости 17 точек общего положения, то есть таких, что никакие три из этих точек не лежат на одной прямой, и покрасил две точки в красный цвет, а остальные в зелёный. Через каждые две одноцветные точки он провёл прямую: соответственно, одну красную, остальные зелёные. Какое наименьшее число зелёных прямых может пересечь красная прямая?
Показать ответ

Задание 5. Дана окружность ω с центром O. Точки M и N соответственно середины радиусов OA и OB окружности ω. На окружности ω выбраны точки E и F так, что хорда EF проходит через точки M и N. Найдите отношение радиуса окружности ω к длине хорды EF, если известно, что EF:MN=8. В ответ запишите квадрат этого отношения.
Показать ответ

Задание 6. На доске написаны не обязательно разные неотрицательные целые числа. Коля вычел из каждого числа 1, затем сложил модули всех получившихся чисел и получил сумму 73. Вася вычел из каждого числа на доске 2, затем сложил модули всех получившихся чисел и получил сумму 74. Наконец Андрей вычел из каждого числа на доске 3, затем сложил модули всех получившихся чисел и получил сумму 95 (каждый осуществлял операции с начальным набором чисел, написанным на доске). Сколько двоек было написано на доске?
Показать ответ

Задание 7. На двенадцати карточках написаны числа от 22 до 33 (разные числа на разных карточках). Двум игрокам, А и Б, сообщили об этом и выдали по одной карточке. Игрок может сказать «больше», если уверен, что число на его карточке больше, чем у другого, «меньше», если уверен, что оно меньше. В остальных случаях игрок говорит «пас». Игроки отвечали по очереди: А, затем Б, затем А и т.д. Первым ходил игрок А. Начиная с первого хода были даны последовательные ответы: Пас, Пас, Пас, Пас, Пас, Больше. Какое число было у игрока Б?
Показать ответ

Задание 8. На доске нарисованы два правильных шестиугольника. Меньший из них имеет площадь 5454, а наименьшая диагональ большего шестиугольника совпадает с наибольшей диагональю меньшего шестиугольника. Найдите площадь фигуры, образовавшейся в результате пересечения этих двух шестиугольников.

error: Запрещено